
Encyclopedia Documentation
Release 0.44

Scott Howard James

Feb 24, 2023

A Brief Tour

1 Overview 1
1.1 What Is It? . 1
1.2 But What Is It Really . 1
1.3 Say that Differently . 1

2 Ok, But What is it Good For? 3
2.1 Relation . 3
2.2 Forest . 6
2.3 Dictionary . 7
2.4 Record . 7

3 Encyclopedia Operations 9
3.1 Signed Encyclopedia . 10
3.2 Indexed Encyclopedia . 10

4 Past, Present and Future 13
4.1 Past . 13
4.2 Present . 13
4.3 Future . 14

5 Abstract Encyclopedias 15
5.1 Unindexed Encyclopedia . 15
5.2 Indexed Encyclopedia . 15
5.3 Signed Encyclopedia . 16

6 Concrete Encyclopedias 17
6.1 Dictionary . 17
6.2 EAV . 17
6.3 Record . 18
6.4 Relation . 19
6.5 Forest . 20
6.6 Arboretum . 21
6.7 XML . 21
6.8 KML . 22

7 Index 23

i

Index 25

ii

CHAPTER 1

Overview

1.1 What Is It?

An Encyclopedia is an abstract container intended for smallish data sets which provides many of the benefits of a re-
lational (and non-relational) database, but with lower syntactic friction. In particular, an Encyclopedia uses arithmetic
expressions typical of core storage mechanisms (e.g. lists, dictionaries) to perform common dataset operations such as
merging and subsetting. Encyclopedia supports functional composition, enabling modifications to entire Encyclope-
dias in a single statement, similar to data frame vectorization.

1.2 But What Is It Really . . .

An Encyclopedia is a mapping class supporting the following additional features:

set operations Encyclopedias may be created and combined using standard arithmetic operators

functional composition Encyclopedia contents may be modified in their entirety by functions, as well as other Ency-
clopedias

and the following optional features:

multi-valued assignments keys may be assigned single values or tagged with multiple values

inversion Encyclopedias may swap their key-value pairs

1.3 Say that Differently

In math-speak, a collection of Encyclopedias is a similar to a mathematical ring of relations where:

• keys serve as the domain

• values serve as the range

• ring addition is performed by set union on these relations

1

https://docs.python.org/3/library/stdtypes.html#typesmapping
https://en.wikipedia.org/wiki/Ring_%28mathematics%29
http://www.purplemath.com/modules/fcns.htm

Encyclopedia Documentation, Release 0.44

• additive inverse is performed by set difference on these relations

• multiplication is performed by functional composition

So to say this yet another way, an Encyclopedia is a collection of key-value pairs which may be combined with other
Encyclopedias using set operations and functional operators.

2 Chapter 1. Overview

CHAPTER 2

Ok, But What is it Good For?

Data analysts have an embarrassment of riches when it comes to manipulating their data. We have multiple com-
putational elements sitting on our laptop and have immediate access to nearly unlimited computational elements in
The Cloud. We have various topologies to help access and store our data including: tabular (e.g. HDF5), relational
(e.g. SQL) and non-relational (e.g. NoSQL). We have data-analyst-friendly languages (e.g. python, R) with increas-
ingly sophisticated libraries (e.g. SciPy, tidyverse) to make it all fit together.

On the more modest end of the data deluge resides the localized data: the tabular CSV reports, the hierarchical XML
data elements and the binary, human-friendly tag clouds. The Encyclopedia syntax is intended to be used in this
realm, providing a common syntax for the “smaller” data elements, providing a bridge between the scripting container
elements (e.g. lists, dictionaries) and the larger data ocean.

As an abstract class, Encyclopedia has limited value on its own. Two concrete Encyclopedias however, are Relations
and Forests, which were the motivators for the creation of the Encyclopedia abstraction.

2.1 Relation

A Relation is an Indexed Encyclopedia which may be thought of as a multi-valued extension of a python dictionary or
function.

In addition to the many-to-one behavior of a Dictionary, a Relation supports all four cardinalities:

M:1 (many-to-one) a function or dictionary

1:1 (one-to-one) an isomorphism or unique alias

1:M (one-to-many) a partition

M:M (many-to-many) a general relation

A Relation instance is restricted to one of the cardinalities upon object instantiation. Relations are invertible1, provid-
ing direct mappings from values back to keys. The following operators are supported:

1 all relations are “invertible” in the sense that domain/range may be swapped; however, relations composed with their inverse will only create
Unity properly when the cardinality is 1:M or 1:1

3

https://en.wikipedia.org/wiki/Embarrassment_of_riches
https://www.scipy.org
https://www.tidyverse.org
https://simple.wikipedia.org/wiki/Relation_(mathematics)
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://simple.wikipedia.org/wiki/Relation_(mathematics)
https://docs.python.org/3.6/library/stdtypes.html#typesmapping
https://en.wikipedia.org/wiki/Cardinality_(data_modeling)

Encyclopedia Documentation, Release 0.44

Fig. 1: Function vs. Relation

4 Chapter 2. Ok, But What is it Good For?

Encyclopedia Documentation, Release 0.44

Nota-
tion

Meaning

R[x] =
y

either overwrite or append to x values depending on cardinality of the Relation (Note: M:1 and 1:1
overwrite, the other two append)

del
R[x]

remove x from domain of E and all associated values for x

R1 +
R2

similar to {**R1, **R2} for python dictionaries, but with associated cardinality constraints

R1 -
R2

remove any R2.keys that lie within R1.keys and the associated values

f * R apply f to each element of R
R1 *
R2

apply R1 to each element of R2

~R reverse domain and range of R

Using notation similar to a python dictionary comprehension (but to be clear not actually valid python), a functional
composition might be expressed as:

{R[f(x)]:f(R[x]) for x in R}

A relational composition as:

{R1[x]:R1[R2[x]) for x in R2}

And an inversion as:

{R[x]:x for x in R}

As an example of the use of a relation, suppose we need to map qualitative weather conditions to dates:

weather = Relation()
weather['2011-7-23']='high-wind'
weather['2011-7-24']='low-rain'
weather['2011-7-25']='low-rain'
weather['2011-7-25']='low-wind'

Note that in the last statement the assignment operator performs an append not an overwrite. So:

weather['2014-7-25']

produces a set of values:

{'low-rain','low-wind'}

Relation also provides an inverse:

(~weather)['low-rain']

also producing a set of values:

{'2014-7-25','2014-7-24'}

See the paper from SciPy 2015 for further exposition on Relation.

2.1. Relation 5

https://github.com/scott-howard-james/relate/wiki/Rationale

Encyclopedia Documentation, Release 0.44

2.2 Forest

Forests are Unindexed Encyclopedias formed from collections of trees.

Syntactically a tree, in our parlance, will grow “upwards”; thus the greater heights of a tree will be closer to the
“leaves”. Each node in a tree connects upwards to a collection of distinct nodes; conversely each node has at most a
single, directly-connecting lower node. Forests may be combined with other Forests using set operations (horizontal
combination), and be grown on top of other Forests using composition (vertical combination).

Sub-branches of Forests are obtained through the bracket “get” notation:

F[x]

Note that the keys used in this bracket notation are different than nodes. In particular, nodes within a Forest are unique;
however, keys may reference multiple nodes. Therefore, there is a many-to-one relationship between keys and nodes;
thus, the “get” returns all sub-branches in F with a root node keyed by x.

To construct new branches, Forests use the “set” bracket notation. The bracket notation of Forests allows for several
nodes to be referenced by a single key, specifically:

F[x] = y

means: create a new node, keyed by y, for every node that is keyed by x.

Forests form the topological foundation of many common hierarchical document formats e.g. XML, JSON, YAML
etc. . . Non-unique keys enable us to include repeated substructures. For instance, the get notation in another context,
namely when y is another forest:

F1[x] = F2

grafts the F2 Forest to all occurrences of x within F1. An example of a related operation is a YAML alias. This grafting
can also be performed using composition notation:

F1 * F2

which means: create a new Forest such when F1 and F2 share a key x, the branches of F2[x] are grafted onto F1 at x.
An example of a related operation is when a library of sub-documents are instanced onto a document when ready for
final document production. The operations for a Forest are as follows:

Notation Meaning
F[x] = y connect new nodes keyed by y to nodes keyed by x
F[x] a Forest consisting all nodes reachable from x
F[x] = F2 graft F2 to F1 at x
del F[x] prune branches for all nodes keyed by x
F.keys() return all node keys within Forest
F.values() all nodes within Forest
F.canopy() union of all leaf nodes in Forest
F.root(x) return node(s) of Tree root containing x
F1 + F2 combine two Forests such that common Trees within both Forests will only appear once (union)
F1 - F2 remove Trees contained in F2 from F1 (difference)
F1 * F2 for each x key common to F1 and F2: graft F2 onto F1 at x.
f * F apply f to each node of F

An extension of a Forest is an Arboretum: a Forest with inheritable node attributes. Attributes are assigned using the
second position in the bracket assignment, namely:

6 Chapter 2. Ok, But What is it Good For?

https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/Tree_(graph_theory)

Encyclopedia Documentation, Release 0.44

F[x, attribute] = value

This assigns the key-value pair (attribute, value) directly to x as well as implicitly to the nodes above x. Retrieving
attributes is dynamic:

F[x, attribute]

meaning, the tree is searched for an attribute starting at the node and descending down the tree until a parent is found
with the assignment. As a motivating example, suppose we had a hierarchical document:

F['Document'] = 'Section 1'
F['Section 1'] = 'Section 1.1'

Assigning the font

F['Section 1', 'font'] = 'Helvetica'

will affect Section 1 and Section 1.1 but will not affect the overall document. A new section created at the Document
level

F['Document'] = 'Section 2'

will be unaffected by the font assignment but further subsections below Section 1.1

F['Section 1.1'] = 'Section 1.1.1'

will have their default font set.

2.3 Dictionary

Another example of an Encyclopedia is simply a python dictionary which has been Encyclopedia-ified. This new
dictionary will behave much like its derived dict but will also support arithmetic set operations and composition. As
an example of the composition feature, if:

fruit = Dictionary({'apple':'red', 'blueberry':'blue'})
colors = Dictionary({'red':'FF0000', 'blue':'0000FF', 'green':'00FF00'})

then

fruit * colors == Dictionary({'apple': 'FF0000', 'blueberry': '0000FF'})

2.4 Record

Building on the Dictionary, a Record is factory for Dictionaries providing other features including:

• restricted keys

• automatic type conversions

• optional defaults

As an example, we can define a factory for recording personal characteristics:

2.3. Dictionary 7

Encyclopedia Documentation, Release 0.44

from encyclopedia import Record
characteristics = Record({

'name':str,
'age':int})

To create the individual Dictionaries we use the Record.instance function:

Dog = characteristics.instance # make it more class-like
fido = Dog()
fido['age']='2'
assert fido['age']==2

Note that the age was converted to an integer by the function int. We can put in any functions we like into the
Record defintion and even auto-populate:

def no_name(x=None):
return 'UNKNOWN' if x is None else str(x)

Named = Record({
'name':no_name,
'age':int},
autopopulate=True).instance

someone = Named()
assert someone['name']=='UNKNOWN'

Note also that Record will complain (with a friendly Exception) is one were to attempt to set keys other than provided
in the factory:

someone['address'] # not valid

8 Chapter 2. Ok, But What is it Good For?

CHAPTER 3

Encyclopedia Operations

It may be illustrative (at least for those of us who like looking at summary tables) to now show an overview of
operations for an Encyclopedia:

Opera-
tion

Description

E[x] = y tag x with y
del E[x] remove x from domain of E . . . also known as burglary. Yep, that was your obligatory Monty Python

reference
E1 + E2 an encyclopedia created by combining elements of E2 and E1 (union)
E1 += E2 add copy of E2 to E1
E1 - E2 an encyclopedia created by removing keys of E2 from E1 (difference)
E1 & E2 an encyclopedia with keys common to both E1 and E2 (intersection)
f * E apply f 2 to all elements of E returning another encyclopedia. (functional composition)
E1 * E2 apply E13 to elements of E2 producing another encyclopedia (entity composition)

Certain implementations of Encyclopedia may be multi-valued, meaning that, assignment:

E[x] = y

may not overwrite the key’s value, but instead append to the key value or tag the key. Similarly, retrieval:

E[x]

may produce a set (or list) of values corresponding to the key.

For the math-letes, note that encyclopedia addition is inherently commutative:

E1+E2 == E2+E1

and associative:
2 when f is a scalar, assume function is multiplicative
3 what encyclopedia composition actually means will depend on the specific encyclopedia implementation, but the intention of composition is

to act element-wise, that is independently of other elements in the encyclopedia

9

https://www.youtube.com/watch?v=R9n11xtjZ3Y

Encyclopedia Documentation, Release 0.44

E1+(E2+E3) == (E1+E2)+E3

due to the nature of element-wise set operations. Composition, however, is not necessarily commutative:

E1*E2 ?= E2*E1

but it is distributive4:

E1*(E1+E3) == E1*(E2+E2)

as functions act element-wise on the keys.

3.1 Signed Encyclopedia

An Encyclopedia is not a proper ring without the existence of a negative signed Encyclopedia:

-E

Note that we specifically refer to the unary operation and not the binary set difference. Note too that this is a little
conceptually unusual, as a negative encyclopedia behaves a bit like antimatter, able to negate a collection of key-
values, but not necessarily to serve as a meaningful mapping in our eminently practical universe. If the unary negative
sign is supported by a derived Encyclopedia, the class will be known as a Signed Encyclopedia, and the following
features will also be supported:

Identity Field
Null[x] existence of Null operator producing None or Error depending on implementation
abs(E) invert “sign” of Encyclopedia
E + abs(E) retain only positive (“real”) components of the Encyclopedia
abs(E1-E2) + abs(E2-E1) symmetric difference
(Null + E)[x] == E[x] additive identity
(E - E)[x] == Null[x] additive inverse

One important distinction between a Signed Encyclopedia and an Unsigned Encyclopedia is the implementation of the
intersection. For an Unsigned Encyclopedia, we may simply remove the elements of E1 which are not in E2:

E1&E2 == E1-(E1-E2)

For a Signed Encyclopedia however, this won’t work as -E1 is another Encyclopedia:

E1-(E1-E2) == E1-E1+E2 == E2

Instead we must use the Signed Encyclopedia’s abs operator to remove the negative elements first:

E1&E2 == E1-abs(E1-E2)

3.2 Indexed Encyclopedia

When a multiplicative inverse:
4 what encyclopedia composition actually means will depend on the specific encyclopedia implementation, but the intention of composition is

to act element-wise, that is independently of other elements in the encyclopedia

10 Chapter 3. Encyclopedia Operations

https://docs.python.org/3/reference/expressions.html
https://en.wikipedia.org/wiki/Antimatter

Encyclopedia Documentation, Release 0.44

~E

is available, the Encyclopedia is a field where:

~E*E == ~E*E == Identity

that is,

(~E*E)[x]==x

Finally, an Indexed Encyclopedia supports inversion, including the following operators and identities:

Notation Meaning
Unity[x] == x existence of unity
~E swap domain and range of E (multiplicative inverse)
(E*~E)[x] == (~E*E)[x] == x Encyclopedia composed with its inverse produces Unity
(Unity * E)[x] == E[x] Unity composed with an Encyclopedia produces that Encyclopedia

3.2. Indexed Encyclopedia 11

https://en.wikipedia.org/wiki/Field_(mathematics)

Encyclopedia Documentation, Release 0.44

12 Chapter 3. Encyclopedia Operations

CHAPTER 4

Past, Present and Future

4.1 Past

As with many abstract types, the concept of Encyclopedia did not emerge from the void ready to be forward instan-
tiated, but rather resulted from the backwards abstraction of specific, concrete implementations (not surprisingly to
anyone following along at this point): Relations and Forests. These classes, in turn, were created to scratch particular
itches:

• Relation: generalize the notion of a python dictionary to allow for many-to-many relations and provide other
conveniences such as invertibility

• Forest: provide a tree syntax using standard mathematical notation which can then be used to construct various
hierarchical data structures

Syntax may not be everything, but it helps. A lot. As many data analysts have found, being able to express something
conveniently may determine whether the analysis gets done at all. Indeed, much of the power of scripting languages,
including python, is the ability to express more complex structures, since the foundational structures (e.g. lists, sets,
dictionaries) are so easy to describe.

Addressing Forests specifically, there are a number of different hierarchical structures (e.g. YAML, XML, JSON)
which are each essentially trees, topologically, but are supported by different packages and syntaxes. Moreover, with
regard to content generation, they sometimes lack the syntax for easily building more complex trees from simpler ones,
such as, mentioned above, combining two trees either as a simple union or recursively, with one tree nested inside the
other.

4.2 Present

The Encyclopedia specification, and implementations for:

• Relation

• Forest

• Arboretum

13

Encyclopedia Documentation, Release 0.44

• Dictionary

• Record

as well as an:

• Encyclopedic wrapper for XML

Can be obtained at

• Github: https://github.com/scott-howard-james/encyclopedia

• PyPi: https://pypi.python.org/pypi/encyclopedia/ (alternatively, just pip encyclopedia)

Note that Encyclopedia has no dependencies outside of the standard python distribution.

4.3 Future

In the near-future, wrappers will be included for YAML and JSON. Additionally, support for other graph types will be
added.

14 Chapter 4. Past, Present and Future

https://github.com/scott-howard-james/encyclopedia
https://pypi.python.org/pypi/encyclopedia/

CHAPTER 5

Abstract Encyclopedias

5.1 Unindexed Encyclopedia

class encyclopedia.Unindexed(mapping=None, frozen=False)
Bases: collections.abc.MutableMapping

An Unindexed Encyclopedia extends a MutableMapping with the following features:

• composition: Encyclopedia contents may be altered by functions or Encyclopedias

• set operation: Encyclopedias may be combined using union, difference and intersection

• mutability: ability to “freeze” and “melt” an object

__add__(other)
create union with this encyclopedia and another

__mul__(other)
compose encyclopedia with another object

__sub__(other)
perform set difference of this encyclopedia and other

copy()
perform a deep copy

freeze()
make encyclopedia immutable

melt()
make encyclopedia mutable

5.2 Indexed Encyclopedia

class encyclopedia.Indexed(mapping=None, frozen=False)
Bases: encyclopedia.templates.Unindexed

15

Encyclopedia Documentation, Release 0.44

An Indexed Encyclopedia may be inverted such that its values map to their keys

__invert__()
invert the Encyclopedia

5.3 Signed Encyclopedia

class encyclopedia.Signed(mapping=None, frozen=False)
Bases: encyclopedia.templates.Indexed

A Signed Encyclopedia may contain negative elements, that is, elements which “cancel” similarly keyed ele-
ments

__abs__()
remove negative elements for this encyclopedia

__and__(other)
intersect using signed logic

__neg__()
negate this encyclopedia

16 Chapter 5. Abstract Encyclopedias

CHAPTER 6

Concrete Encyclopedias

6.1 Dictionary

class encyclopedia.Dictionary(mapping=None, frozen=False)
Bases: dict, encyclopedia.templates.Unindexed

A simple instantiation adding Encyclopedic features to the python dictionary

6.2 EAV

class encyclopedia.EAV(data=None, fmt: str = None, fields=(’entity’, ’attribute’, ’value’),
vcast=None, acast=<class ’str’>, ecast=<class ’str’>, defaults=None,
vcasts=None)

Bases: dict, encyclopedia.templates.Unindexed

Container for storing smallish EAV “triples” (Entity-Attribute-Value). - intent of class is to provide dictionary-
like access rather than data analysis functionality - internally, EAV is stored as a dictionary (key:E) of dictionar-
ies (key:A,value:V) - class supports encyclopedic operations e.g. subtraction (difference) and addition (union)

set-ting:

eav[entity, attribute] = value eav[[entity1, . . .], attribute] = value eav[[entity1, . . .], attribute] =
[value1, . . .] # len(entities) must equal len(values) eav[:, attribute] = value # assign all entities same
value for attribute

get-ting:

eav[entity, attribute] # value for a specific attribute eav[entity] # dictionary of elements referenced by
entity

get-ting producing new EAV:

eav[:, attribute] # new EAV with all entities and but only one attribute eav[:, [attribute1, attribute2]]
new EAV with all entities and but only specified attributes eav[entity,:] # new EAV with only one
entity eav[[entity1, . . .],:] # new EAV with only specified entities

17

Encyclopedia Documentation, Release 0.44

Unsupported at this time:

eav[entity, :] = value # ERROR eav[entity, [attribute1, . . .]] = [value1, . . .] # ERROR

__delitem__(thing)
Delete self[key].

__getitem__(thing)
x.__getitem__(y) <==> x[y]

__init__(data=None, fmt: str = None, fields=(’entity’, ’attribute’, ’value’), vcast=None,
acast=<class ’str’>, ecast=<class ’str’>, defaults=None, vcasts=None)

• fmt (type may be specified using one of the following strings . . .)

– dict: dictionary of dictionaries (auto-detected)

– triple: list of EAV dictionaries/tuples (defaulted)

– column: list of records with field names as first row and entities on first column (must force
this option)

• vcast: value cast e.g. int

• acast: attribute cast e.g. str

• ecast: entity cast e.g. str

• defaults: dictionary of defaults for specific attributes

• vcasts: dictionary of casting for specific attributes

__setitem__(thing, value)
Set self[key] to value.

__str__()
Return str(self).

__weakref__
list of weak references to the object (if defined)

attributes(entities=None)
computationally determine which attributes are used for specified entities

compose(other, entities=None)
perform functional or Encyclopedic composition

copy()
deep copy of EAV. Preserves casting and defaults.

copy_style()
create empty EAV preserving casting and defaults.

rename(renames, entities=None)
rename attributes (. . . not the entities)

subtract(other)
perform set difference

6.3 Record

class encyclopedia.Record(mapping=None, autopopulate=False, restrict=True)
Bases: dict, encyclopedia.templates.Unindexed

18 Chapter 6. Concrete Encyclopedias

Encyclopedia Documentation, Release 0.44

A factory creating Encyclopedia-ified Dictionaries with:

• restricted keys

• automatic type conversions

• optional defaults

instance()
create an individual (Record) instance

6.4 Relation

class encyclopedia.Relation(init=None, cardinality=’M:M’, ordered=False, frozen=False)
Bases: encyclopedia.templates.Indexed

General purpose, discrete relation container for all four mapping cardinalities:

• 1:1 (Isomorphism)

• 1:M (Immersion)

• M:1 (Function e.g. Python Dictionary)

• M:M (General Relation)

Inversion, for all cardinalities, is provided (at the cost of doubled storage)

exception Error
Bases: encyclopedia.templates.Error

label Relation exceptions

__init__(init=None, cardinality=’M:M’, ordered=False, frozen=False)
create a new Relation using a variety of different inputs

__invert__()
reverse the domain and range

Note: Relation inversion uses references instead of copies

__len__()
number of keys (domain)

__setitem__(domain, target)

• add key-value pairs for 1:M and M:M cardinalities

• overwrite key values for 1:1 and M:1 cardinalities

__str__()
display the forward and inverted mappings

compose(other)
compose relation with another relation or a function

subtract(other)
implement set difference

unfrozen()
function decorator to check if object is unfrozen

update(other)
update a Relation with another Relation

6.4. Relation 19

Encyclopedia Documentation, Release 0.44

values()
the range of the mapping

6.5 Forest

class encyclopedia.Forest(offset: int = 0, parent=None)
Bases: encyclopedia.templates.Unindexed

An Encyclopedia of trees <https://en.wikipedia.org/wiki/Tree_(graph_theory)>. There is no specific “Tree”
class; instead, a Tree is Forest with a single, connected graph. This is purposeful, as adding two Trees creates a
Forest, not another Tree.

Terminology for the Forest class:

• Tree: single, connected (tree) graph

• Forest: a (possibly empty) collection of Trees, supporting encyclopedic operations

• Node: a single node in a graph

• Twig: a connected pair of nodes

• Sprout: a new, connected node

class Node(alias, id)
Bases: object

store the non-unique alias and the unique ID for a Node

identified(identified: bool, off: int = 0)
return either an offset Node ID or simply the alias

above(alias, aliased=False)
generate nodes above aliased node(s)

aliased(alias=None)
generate set of nodes referenced by an alias

below(alias, aliased=False)
generate parent below aliased node(ss)

branches(alias)
return branches (e.g. Trees) above the aliased node(s)

climb(alias=None, level: bool = False, twig: bool = False, identified: bool = True, offset: int = 0)
generate tree of nodes reacheable from alias

compose(other)
composition depends on context of “other”:

• scaled by integers

• acted upon by functions

• grafted with Forests

cutting(alias=None, identified: bool = True, offset: int = 0, morph: function = <function Unin-
dexed.identity>)

subforest rooted at alias

graft(forest, alias=None, identified: bool = True)
glue forest onto another forest at aliased node(s)

20 Chapter 6. Concrete Encyclopedias

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Encyclopedia Documentation, Release 0.44

height()
the maximum height of all nodes in Forest (in all trees)

leaves(alias=None)
leaves reachable from alias

limb(alias, offset: int = 0)
the tree (single line of nodes) below aliased node(s)

prune()
eliminate duplicate trees in a forest

root(alias=None)
tree root of aliased node(s)

sorted(alias=None, level: bool = False, twig: bool = False, offset: int = 0, identified: bool = True,
aliased: bool = False)

topologically sorted node list (not iterator)

sprout(alias)
make a unique node identifier (referenced by an alias)

subtract(other)
perform set difference when “other” is a Forest; otherwise, delete element

Note: Encyclopedia mixin

unfrozen()
function decorator to check if object is unfrozen

update(other)
perform set union when “other” is a Forest; otherwise, add a new tree

Note: MutableMapping mixin

values()
implicit by __getitem__ (mixin) but implemented for performance reasons

6.6 Arboretum

class encyclopedia.Arboretum(offset: int = 0, parent=None)
Bases: encyclopedia.forest.Forest

A Forest with inhertiable attributes. Note: as attributes are assigned using setitem syntax, tuples cannot be used
as node aliases

6.7 XML

class encyclopedia.XML
Forest syntax combined with an elementTree XML implementation. To avoid internal confusion, inherits from
neither elementTree nor Arboretum directly, thus the tree(forest) is stored in parallel to the elementTree structure

copy()
perform a deep copy

unique(name)
create a unique element name

6.6. Arboretum 21

Encyclopedia Documentation, Release 0.44

write(filename=None, doctype=None)
write the XML, adding tabs for pretty-printing

6.8 KML

class encyclopedia.KML
An encyclopedia-ified version of the KML (Keyhole Markup Language) GIS format. In addtion to encyclopedia
operations, KML supports the following features:

• a draw function for ease in creating a KML geometries

• records for managing KML styles and coordinates

Coordinate
alias of encyclopedia.record.Record.instance.<locals>.Internal

Style
alias of encyclopedia.record.Record.instance.<locals>.Internal

static coordinated(record, show_description=None, show_data=None, altitude_in_feet=True)
create a KML coordinate

draw(points, folder, style, geometry=’LineString’, extrude=False, visibility=True, tesselate=None, alti-
tude=’absolute’)

create a KML geometry in a specified folder using:

• collection of KML drawing parameters

• set of points

points are provided as an iterated list of dictionaries with (at least) the following fields:

• uid (Unique Identifier)

• id (KML element label)

• lat

• lon

• alt (in feet)

• tick (UNIX time)

Points will be plotted in the order they are occur in the stream Meta data (e.g. id) will only be taken from
the first point in the stream

if begin/end appears as fields:

• begin (UNIX time)

• end (UNIX time)

will create a time block. As with meta data, only the data on the first uid appearance is used

static styled(record)
create a KML style

stylize(record)
create a KML style element

write(filename=None, doctype=None, mlns=’http://www.opengis.net/kml/2.2’,
gxmlns=’http://www.google.com/kml/ext/2.2’)

write KML to a file

22 Chapter 6. Concrete Encyclopedias

CHAPTER 7

Index

• genindex

23

Encyclopedia Documentation, Release 0.44

24 Chapter 7. Index

Index

Symbols
__abs__() (encyclopedia.Signed method), 16
__add__() (encyclopedia.Unindexed method), 15
__and__() (encyclopedia.Signed method), 16
__delitem__() (encyclopedia.EAV method), 18
__getitem__() (encyclopedia.EAV method), 18
__init__() (encyclopedia.EAV method), 18
__init__() (encyclopedia.Relation method), 19
__invert__() (encyclopedia.Indexed method), 16
__invert__() (encyclopedia.Relation method), 19
__len__() (encyclopedia.Relation method), 19
__mul__() (encyclopedia.Unindexed method), 15
__neg__() (encyclopedia.Signed method), 16
__setitem__() (encyclopedia.EAV method), 18
__setitem__() (encyclopedia.Relation method), 19
__str__() (encyclopedia.EAV method), 18
__str__() (encyclopedia.Relation method), 19
__sub__() (encyclopedia.Unindexed method), 15
__weakref__ (encyclopedia.EAV attribute), 18

A
above() (encyclopedia.Forest method), 20
aliased() (encyclopedia.Forest method), 20
Arboretum (class in encyclopedia), 21
attributes() (encyclopedia.EAV method), 18

B
below() (encyclopedia.Forest method), 20
branches() (encyclopedia.Forest method), 20

C
climb() (encyclopedia.Forest method), 20
compose() (encyclopedia.EAV method), 18
compose() (encyclopedia.Forest method), 20
compose() (encyclopedia.Relation method), 19
Coordinate (encyclopedia.KML attribute), 22
coordinated() (encyclopedia.KML static method),

22
copy() (encyclopedia.EAV method), 18

copy() (encyclopedia.Unindexed method), 15
copy() (encyclopedia.XML method), 21
copy_style() (encyclopedia.EAV method), 18
cutting() (encyclopedia.Forest method), 20

D
Dictionary (class in encyclopedia), 17
draw() (encyclopedia.KML method), 22

E
EAV (class in encyclopedia), 17

F
Forest (class in encyclopedia), 20
Forest.Node (class in encyclopedia), 20
freeze() (encyclopedia.Unindexed method), 15

G
graft() (encyclopedia.Forest method), 20

H
height() (encyclopedia.Forest method), 20

I
identified() (encyclopedia.Forest.Node method),

20
Indexed (class in encyclopedia), 15
instance() (encyclopedia.Record method), 19

K
KML (class in encyclopedia), 22

L
leaves() (encyclopedia.Forest method), 21
limb() (encyclopedia.Forest method), 21

M
melt() (encyclopedia.Unindexed method), 15

25

Encyclopedia Documentation, Release 0.44

P
prune() (encyclopedia.Forest method), 21

R
Record (class in encyclopedia), 18
Relation (class in encyclopedia), 19
Relation.Error, 19
rename() (encyclopedia.EAV method), 18
root() (encyclopedia.Forest method), 21

S
Signed (class in encyclopedia), 16
sorted() (encyclopedia.Forest method), 21
sprout() (encyclopedia.Forest method), 21
Style (encyclopedia.KML attribute), 22
styled() (encyclopedia.KML static method), 22
stylize() (encyclopedia.KML method), 22
subtract() (encyclopedia.EAV method), 18
subtract() (encyclopedia.Forest method), 21
subtract() (encyclopedia.Relation method), 19

U
unfrozen() (encyclopedia.Forest method), 21
unfrozen() (encyclopedia.Relation method), 19
Unindexed (class in encyclopedia), 15
unique() (encyclopedia.XML method), 21
update() (encyclopedia.Forest method), 21
update() (encyclopedia.Relation method), 19

V
values() (encyclopedia.Forest method), 21
values() (encyclopedia.Relation method), 19

W
write() (encyclopedia.KML method), 22
write() (encyclopedia.XML method), 21

X
XML (class in encyclopedia), 21

26 Index

	Overview
	What Is It?
	But What Is It Really …
	Say that Differently

	Ok, But What is it Good For?
	Relation
	Forest
	Dictionary
	Record

	Encyclopedia Operations
	Signed Encyclopedia
	Indexed Encyclopedia

	Past, Present and Future
	Past
	Present
	Future

	Abstract Encyclopedias
	Unindexed Encyclopedia
	Indexed Encyclopedia
	Signed Encyclopedia

	Concrete Encyclopedias
	Dictionary
	EAV
	Record
	Relation
	Forest
	Arboretum
	XML
	KML

	Index
	Index

